Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(13): e2307561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967348

RESUMO

Multifunction superhydrophobic coatings that facilitate water harvesting are attractive for addressing the daunting water crisis, yet, they are caught in a double bind when their durability is considered, as durable coatings will require both tough micro-textures to survive concentrated stress and high-surface-energy chemistry to form chemical bonds within the matrix. To date, a universal bulk-phase coating that combines multifunctionality, ultra-durability, and fabrication feasibility remains challenging. Here, a binary cooperative cell design is reported that can solve the contradiction between the multifunctionality and durability requirements of superhydrophobic coatings. In this strategy, mechanochemically tailored cells with releasable nanoseeds are infused in the common matrix, which serves both as a versatile chemical bridge to achieve strong bonds within the coating building blocks, and as an instantaneous self-repairing generator to improve durability. Such a strategy significantly boosted the wear resistance and outdoor stability of the coatings by over 30-100 and 18 folds, respectively, compared with conventional coatings. The coating is applied to the sustainable application, i.e., enhancing the water collection efficiency by at least 1000% even after harsh abrasion. The strategy will broaden the vision in handling the dilemma properties among functional coatings and promote the application of superhydrophobic coatings in extreme environments.

2.
Small ; 19(47): e2303658, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37449342

RESUMO

Activated carbon (AC) is widely used to removing hazardous pollutants from air and water, owing to its exceptional adsorption properties. However, the high affinity of water molecules with the surface oxygen-containing functional groups can adversely affect the adsorption performance of AC. In this study, a facile and efficient method is presented for fabrication of hydrophobic AC through surface monolayer silanation. Compared to initial AC, the hydrophobic AC improves the water contact angle from 29.7° to 123.5° while maintaining high specific surface area and enhances the removal capacity of multi-phase pollutants (emulsified oil and toluene). Additionally, the hydrophobic AC exhibits excellent adsorption capability to harmful algal bloom species (Chlorella) (97.56%) and algal organic matter (AOM) (96.23%) owing to electrostatic interactions and surface hydrophobicity. The study demonstrates that this method of surface monolayer silanation can effectively weaken the effect of water molecules on AC adsorption capacity, which has significant potential for practical use in air and water purification, as well as in the control of harmful algal blooms.

3.
ACS Appl Mater Interfaces ; 13(36): 43374-43386, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469104

RESUMO

The development of modern agriculture has prompted the greater input of herbicides, insecticides, and fertilizers. However, precision release and targeted delivery of these agrochemicals still remain a challenge. Here, a pesticide-fertilizer all-in-one combination (PFAC) strategy and deep learning are employed to form a system for controlled and targeted delivery of agrochemicals. This system mainly consists of three components: (1) hollow mesoporous silica (HMS), to encapsulate herbicides and phase-change material; (2) polydopamine (PDA) coating, to provide a photothermal effect; and (3) a zeolitic imidazolate framework (ZIF8), to provide micronutrient Zn2+ and encapsulate insecticides. Results show that the PFAC at concentration of 5 mg mL-1 reaches the phase transition temperature of 1-tetradecanol (37.5 °C) after 5 min of near-infrared (NIR) irradiation (800 nm, 0.5 W cm-2). The data of corn and weed are collected and relayed to deep learning algorithms for model building to realize object detection and further targeted weeding. In-field treatment results indicated that the growth of chicory herb was significantly inhibited when treated with the PFAC compared with the blank group after 24 h under NIR irradiation for 2 h. This system combines agrochemical innovation and artificial intelligence technology, achieves synergistic effects of weeding and insecticide and nutrient supply, and will potentially achieve precision and sustainable agriculture.


Assuntos
Portadores de Fármacos/química , Fertilizantes , Herbicidas/química , Inseticidas/química , Nanopartículas/química , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/toxicidade , Animais , Cichorium intybus/efeitos dos fármacos , Aprendizado Profundo , Portadores de Fármacos/efeitos da radiação , Liberação Controlada de Fármacos , Álcoois Graxos/química , Álcoois Graxos/efeitos da radiação , Guanidinas/química , Guanidinas/toxicidade , Herbicidas/toxicidade , Indóis/química , Indóis/efeitos da radiação , Raios Infravermelhos , Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/efeitos da radiação , Nanopartículas/efeitos da radiação , Neonicotinoides/química , Neonicotinoides/toxicidade , Nitrocompostos/química , Nitrocompostos/toxicidade , Polímeros/química , Polímeros/efeitos da radiação
4.
Sci Total Environ ; 789: 147845, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058575

RESUMO

Stimulus-responsive pesticide or fertilizer systems have been emerged to improve the use efficiency of agrochemicals, reduce over-application and ensuing environmental problems. However, environmental-friendly synthesis of these systems still remain challenging. In this work, an environmental-friendly synthesis strategy has been developed to form a pesticide and fertilizer combination to achieve the integration of plant protection and nutrient supply. This pesticide-fertilizer combination system was fabricated using ammonium zinc phosphate (ZNP) and in-situ synthesized zeolitic imidazolate framework-8 (ZIF-8) as nutrients resources, and dinotefuran (DNF) as a pesticide. DNF was encapsulated in-situ (loading capacity of 12.32 ± 0.46%) during the ZIF-8 crystal synthesis process, rather than loaded by further adsorption, which improved its stability and prevented premature or rapid release. The hydrophobic ZIF-8 provided a pH-responsive slow-release behavior. The cumulative released DNF within seven days at pH 4.0, 7.0 and 10.0 was 66.30%, 40.41%, and 37.44%, respectively. The pesticide-fertilizer combination system showed significant effects on corn seed pre-cultivation, soil cultivation and pest control. This work provides a strategy for the integration of pesticide and fertilizer, which will reduce negative environmental effects caused by their over-applications and have great potential in modern sustainable agriculture.


Assuntos
Praguicidas , Zeolitas , Fertilizantes/análise , Nutrientes , Solo
5.
Mater Sci Eng C Mater Biol Appl ; 110: 110697, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204009

RESUMO

Thrombotic complications turn into the second leading cause of death in colon cancer patients due to the hypercoagulable state caused by malignancy. Therefore, it is necessary to treat colon cancer and its thrombosis complications simultaneously. Herein, a nano polymer conjugate based on disulfide cross-linked low-generation peptide dendrimers was developed to treat colon cancer and its thrombotic complications. First, two-generation polyglutamic acid dendrimer was bonded to nattokinase (NK) and then cross-linkers containing disulfide linkages were used to obtain polymer conjugates (NK-G2)n. Then doxorubicin (Dox) was encapsulated. The system can release drugs sequentially due to the dissociation of the polymer conjugates. In vitro thrombolytic experiments exhibited a significant thrombolysis ability of (NK-G2)n. The toxicity and cellular uptake tests on HCT116 cells showed that Dox loaded polymer conjugates had good endocytosis ability and anti-cancer effect. Therefore, this drug delivery system will be a promising strategy to the combined treatment of colon cancer and thrombotic complications.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Polímeros/química , Trombose/induzido quimicamente , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Células HCT116 , Humanos , Camundongos , Ácido Poliglutâmico/química , Células RAW 264.7 , Subtilisinas/química
6.
J Biomed Mater Res A ; 107(8): 1824-1831, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31012233

RESUMO

With the frequent occurrence of thrombus diseases, thrombus has become a factor endangering human health. Nattokinase (NK) is a new generation of thrombolytic drug with efficient thrombolytic effect and no major side effects. However, it is easily inactivated in external environment due to its sensitivity, which is still a challenge for its generalized application. Herein, a mesoporous silica/polyglutamic acid peptide dendrimer (M-MSNs-G3 -RGD) nanoparticle was prepared to protect and transport NK. First, magnetic mesoporous silica nanoparticles (M-MSNs) were prepared as the core of the whole nanoparticle, then polyglutamic acid peptide dendrimer (G3 ) was bonded to form M-MSNs-G3 . At last, arginine-glycine-aspartic peptide (RGD) was grafted onto the M-MSNs-G3 to obtain M-MSNs-G3 -RGD. The physical and chemical characteristics and biological toxicity of M-MSNs-G3 -RGD were studied. Thrombus-targeting nanocomposites M-MSNs-G3 -RGD/NK were prepared by loading the thrombolytic drug NK via electrostatic interaction. In vitro and in vivo targeted thrombolytic experiments showed that the nanoparticles exhibited significant thrombolysis ability. These results suggested the potential application of M-MSNs-G3 -RGD/NK in dual targeted thrombolysis.


Assuntos
Dendrímeros/química , Oligopeptídeos/química , Ácido Poliglutâmico/química , Dióxido de Silício/química , Trombose/terapia , Animais , Morte Celular , Galinhas , Magnetometria , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Porosidade , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Subtilisinas/metabolismo , Termogravimetria
7.
Int J Biol Macromol ; 124: 582-590, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502427

RESUMO

In this work, a multielement compound fertilizer (MCF) was fabricated using ammonium zinc phosphate (AZP) as kernel nutrient element, and polydopamine (Pdop) film as inner coating. Besides, sodium carboxymethyl starch (SCS) was proposed as a constituent in AZP@Pdop mixture due to its adhesion, gelling and swelling abilities, to prepare well dispersed suspensions and consolidate the single-coated fertilizer. What's more, iron (Fe), the vital microelement for the growth of crops and alleviating the leaf chlorosis, was chelated by the carboxylate groups of SCS, contributing to make the outer coating compact. The release behavior showed that zinc (Zn), phosphorus (P) and Fe reached 60% cumulative release in 30 days, and the use efficiency of nutrients for corn was about 60%. In summary, this work provides a novel approach to improve the utilization efficiency and prolong duration of the MCF, which might have a potential application in agronomics.


Assuntos
Fertilizantes , Indóis , Polímeros , Compostos de Sódio , Amido/análogos & derivados , Compostos de Amônio/química , Produtos Agrícolas , Fertilizantes/análise , Indóis/química , Fosfatos/química , Fósforo , Polímeros/química , Compostos de Sódio/química , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Termogravimetria , Zea mays , Zinco , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...